/

DATA SCIENCE

Master the Power

Master Data Science with VSPHERE Technologies

This Comprehensive Data Science Program is meticulously designed to guide learners through the essentials of data science to advanced applications, making them proficient in extracting insights from data and solving real-world problems. Ideal for beginners and professionals alike, this course combines theoretical knowledge with hands-on practice through the use of popular data science tools and methodologies.

In today's data-driven world, data science skills are more valuable than ever.

Invest in your future, enroll today, and become a data scientist!

+ 91 86600 39835

CALL ANYTIME OUR TO EXPERTS

Syllabus for Data Science

 Introduction to machine learning

  2.01 Variables

  2.02 Operators

  2.03 Data Structures

        2.03.01 Lists

        2.03.02 Tuples

        2.03.03 Dictionaries

  2.04 Indexing

  2.05 Slicing

  2.06 String Handling

  2.07 Control Flow Statements 

  2.08 Functions

  2.09 Classes 

  2.10 Numpy

  2.11 Pandas

        2.11.01 Data Preprocessing with pandas

  2.12   Date Time

  2.13   File Handling

    3.11 Measurement scale

    3.12 Sampling

    3.13 Types of variables

    3.14 Types of statistics

    3.15 Measure of central tendency

    3.16 Measure of variability

    3.17 Plots

    3.18 Skewness

    3.19 Kurtosis

     3.20 Central limit theorem

     3.21 Probability

     3.22 Combinations and Permutations

     3.23 Bayes' Theorem

     3.24 Confidence Interval

     3.25 Pearson correlation coefficient

     3.26 Hypothesis test

     3.27 Decision Errors

     3.28 Z,T tests

     3.29 Anova (one way, two way)

     3.30 Chi Square test Course Content

   4.01 Regression basics

     4.02 Simple Linear Regression

     4.03 Gradient Descent algorithm

     4.04 Polynomial Regression

     4.05 Ridge and Lasso Regression

     4.06 Multi nominal Regression

     5.01 Classification basics

     5.02 Training and Loss

     5.03 Threshold

     5.04 Accuracy

     5.05 Precision and Recall

     5.06 Roc Curve and AUC

     5.07 Bias and Variance

     5.08 Cross Validations

     5.09 Grid and Random Search

     5.10 Im-balanced datasets Course Content

        6.01 PCA basics

7.01 Tree basics

        7.02 Random Forests

        7.03 ADA Boost

        7.04 XG-Boost

  8.01 ARIMA

         8.02 SARIMA

         8.03 Anomaly Detection and Forecasting

  11.01 Clustering basics

         11.02 K Means Clustering

         11.03 Hierarchical Clustering

         11.04 DB Scan clustering

         11.05 Anomaly Detection Course Content

12.01 RegEx

          12.02 Remove punctuation

          12.03Tokenization

          12.04 Remove Stop words

          12.05 Lemmatize/Stemmer

          12.06 Count Vectorization

          12.07 Sparse matrices

          12.08 N-Grams

          12.09 TF-IDF

          12.10Bayesian Classifier

           12.11 Sentiment classification

              12.12 Ham or Spam classification

              12.13 Text Summarization Course Content

     13.01 Content based Filtering

              13.02 Collaborative Filtering

              13.03 Singular Value Decomposing

              13.04 Reading data from NOSQL db, HDFS , Kafka stream

    14.01 Saving and Loading Models

               14.02 Flask framework

               14.03 Django framework

               14.04 Deploying the Models

               14.05 Model Testing

     15.01  Matplotlib and Seaborn Visualizations

                15.02 Plotly dash visualizations

                           15.02.01 Plots using the Plotly

                           15.02.02 Dashboard implementations Course Content

   16.01 Neural Networks Basics

                16.02 TensorFlow Basics

                16.03 Sparce and Dense neural networks( Regression and Classification)

                16.04 Dimension Reduction Cat2vector

                16.05 CNN

                16.06 Sequential Neural Networks

                            16.06.01 RNN

                            16.06.02 LSTM

                 16.07 NLP Using Neural Networks

                     18.01Rasa and Amazon LEX

  19.01 Azure and GCP Machine Learning

                      19.02 Azure and GCP based Document Processing

Program Description

At VSPHERE Technologies, we offer a comprehensive Data Science training program designed to equip you with the knowledge and expertise to extract insights from massive datasets and solve complex problems. Become a data scientist and unlock the power of data to drive real-world results.

Dive Deep into the Data Science Universe

Benefits of Our Data Science Training Program

Learn the latest tools and techniques used by data scientists in real-world applications.

Gain knowledge from data science professionals with a strong academic background and industry experience.

Solidify your skills through hands-on projects and case studies, tackling real-world data science challenges.

Get personalized guidance on career paths in data science, including resume building and interview preparation.

Build a strong portfolio showcasing your data science skills through projects and capstone work.

We’re Certified IT Experts.

Get to Know more About Course

Key features of the programs are

We created a syllabus that aligns with industry standards and caters to both beginning and experienced learners.

Our Program Benefits

VSPHERE Technologies